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Introduction

Many chronic disorders such as insulin resistance, diabe-
tes, dyslipidemia, hypertension, coronary heart disease, 
ischemic stroke, pulmonary disease, gout, osteoarthritis, 
cancer, neurological diseases, cataracts, gastrointestinal dis-
ease, and genitourinary disease (in women) are associated 
with, a worldwide problem, obesity. It has been shown that 
the progression of these disorders are reversed or slowed by 
weight loss [1]. Body weight may be maintained by balanc-
ing caloric intake with the energy expenditure. Thus, diet and 
exercise are crucial to control the weight. However, these 
may be assisted by appetite reducing oral agents. Ghrelin, 
produced in stomach and hypothalamus [2], is a 28 amino 
acid containing orexigenic hormone. It is an endogenous lig-
and of the growth hormone secretagogue receptor (GHS-R). 
GHS-R is a G-protein-coupled receptor which is expressed 

primarily in the pituitary gland and the brain and to a lesser 
extent in the periphery. The unique post-translational acyla-
tion, an octanoyl group at the Ser-3 hydroxyl group, of active 
ghrelin is essential for orexigenic function and also neces-
sary for its penetration of the blood-brain barrier [2,3]. The 
intake of nutrient regulates the level of ghrelin in blood. In 
rats and human subjects, intracerebroventricular and intra-
venous administration of ghrelin, respectively, increased 
appetite and food intake [4–8]. It has been observed that the 
weight gain, induced by ghrelin, is primarily from adipose 
tissue and not from muscle or bone mass [9]. The inhibition 
of ghrelin actions with peptidyl GHS-R antagonists [7,9], 
ghrelin antibody [10], and antisense oligonucleosides [11] 
resulted in weight loss and food intake decrease in rodents 
[7, 9–11]. The isoxazole and tetralin carboxamide based 
GHS-R antagonists [12–15], displaced 125I-ghrelin binding 
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Abstract
A quantitative structure-activity relationship (QSAR) study has been carried out on growth hormone secreta-
gogue receptor antagonistic activity of the derivatives of 2,4-diaminopyrimidine. To obtain significant QSARs, 
the approaches involving the non-parametric such as Fujita-Ban, and the parametric based on physicochemical 
and DRAGON descriptors in Hansch type of analysis have been employed. The Fujita-Ban approach, however, 
was constrained to 18 compounds only due to a limited number of substituents appeared at varying positions. 
The derived contributions of different substituents and the parent moiety were used to identify the potential 
congeners. The physicochemical model of Hansch was subsequently used to interpret the type of interactions 
involved between the receptor sites and varying positions of these compounds. The study, employing DRAGON 
descriptors in Hansch approach was also carried out on this data set to discuss the prevailing interactions in 
terms of topological descriptors. The derived highest significant model was discussed to delineate the type of 
interactions involved and suggestions have been made for different alterations to lead to further potential com-
pounds of the series.

Keywords:  Quantitative structure-activity relationship (QSAR); antagonists of growth hormone secretagogue 
receptor (GHS-R); binding activity to GHS-R; derivatives of 2, 4-diaminopyrimidine; Fujita-Ban approach; Hansch type 
of analysis; combinatorial protocol in multiple linear regression (CP-MLR) analysis; physicochemical parameters and 
DRAGON descriptors
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and antagonized ghrelin-induced intracellular Ca2+ flux 
in functional assay. However, these compounds did not 
exhibit an effect when tested in in vivo animal models. More 
recently, a synthetic study was performed [16] on the deriva-
tives of 2,4-diaminopyrimidine and to identify them as effec-
tive GHS-R antagonists. These compounds were first run in 
the GHS-R binding assays and were further investigated in 
an intracellular Ca+2 flux activity assay.

The variation in the chemical space of these analogues 
is mainly focused around two phenyl rings, attached to the 
2,4-diaminopyrimidine core. In order to investigate the scope 
of such chemical space around 2, 4-diaminopyrimidine 
moiety, a high dimensional quantitative structure-activity 
relationship (QSAR) study has been undertaken on these 
analogues to rationalize their GHS-R activity profiles. For this, 
it is necessary to characterize the molecules or their varying 
structural fragments from different perspectives. Among dif-
ferent methods, graph theoretical approaches provide large 
number of structural indices characteristic to the molecules 
and/or their functional units [17–21]. Moreover, when deal-
ing with a large number of descriptors, for the optimum util-
ization of information content of the generated data sets, it is 
necessary to follow a typical protocol(s) to identify the best 
models as well as information rich descriptors corresponding 
to the phenomenon under investigation. The Combinatorial 
Protocol in Multiple Linear Regression (CP-MLR), devel-
oped recently [22–27], is an approach among many others 
to address the model evolution in high-dimensional QSAR 
studies. The aim of present communication is therefore, to 
establish the QSAR between the reported GHS-R antagon-
istic activity of 2,4-diaminopyrimidine derivatives and the 
molecular descriptors, obtained from graph theory.

Material and methods

Data set
In present study 2, 4-diaminopyrimidine derivatives (Table I) 
have been taken from the literature report [16] along with 
their antagonistic activity. The activity was expressed as the 
logarithm of the inverse of inhibitory concentration, pIC

50
, 

where IC
50

 represents the molar concentration, required to 
bring out 50% inhibition of GHS-R. Two different approaches, 
namely the non-parametric and the parametric, have been 
used to develop the important QSARs of titled compounds.

The Fujita-Ban methodology [28], based on additivity 
principle, is a non-parametric approach and requires cer-
tain group to occur two or more times at a given varying 
position in a molecule. The Hansch type of analysis [29–31], 
on the other hand, is a parametric approach in which physi-
cochemical and/or structural parameters are being used as 
the correlative parameters. This method is generally used to 
increase the understanding of the mechanisms of action of 
a set of congeners and to direct drug design in a congeneric 
series as well as to attempt to predict biological activities 
quantitatively. In general, the approach is to set up the equa-
tions involving different combinations of the substituents 
constants, then to allow the correlative methods to aid in the 

selection of the ‘best equation’ justifying it statistically and 
avoiding the chance correlations. For the present study, the 
physicochemical parameters were taken from the literature 
[32]. The indicator variables, representative of the presence 
or absence of certain structural characteristic, have also 
been used. Both of these approaches have limitations as 
far as their use is concern for a new series of compounds. 
The Fujita-Ban methodology can not be employed if the 
appearance of certain substituent at a given position is less 
than two. Further, the study can not be extrapolated beyond 
the prevailing substituent’s pattern in the chemical space. 
Similarly the Hansch type of approach is found unsuitable, 
if the desired physicochemical parameters have not been 
determined for certain substituents. The use of structural 
descriptors, instead of physicochemical parameters, may 

Table I.  The structures of the 2, 4-diaminopyrimidine analogues included 
in training set along with their GHS-R binding activity.

N

N

X

R2

NH2

H2N
R1

Y

S. No. R
1

R
2

X Y Binding IC
50

 (nM)a

  1 CH
3

H NHCH
2

Cl 310

  2 CH
3

H NHCH
2

SO
2
CH

3
7.4

  3b CH
3

H NHCH
2

SO
2
CH

3
2.4

  4 CH
3

H NHCH
2

NO
2

11

  5 CH
3

H NHCH
2

COCH
3

57

  6 CH
3

H NHCH
2

CHOHCH
3

13

  7 CH
3

H NHCH
2

CN 160

  8 CH
3

H NHCH
2

SO
2
CF3 21

  9 OCH
2
Ph H NHCH

2
Cl 19

10 OCH
2
Ph H NHCH

2
NO

2
0.2

11 OCH
2
Ph H NHCH

2
SO

2
CH

3
0.3

12 OCH
2
Ph H NHCH

2
SO

2
CF3 1.0

13 OCH
2
Ph H NHCH

2
COCH

3
1.2

14 OCH
2
Ph H NHCH

2
CN 2.8

15 OCH
2
Ph H NHCH

2
CF3 2.9

16 OCH
2
Ph H NHCH

2
OCH

3
7.7

17 OCH
2
Ph H NHCH

2
H 50

18 CH
2
Ph H NHCH

2
Cl 3170

19 OCH
2
Ph H OCH

2
SO

2
CH

3
6.9

20 OCH
2
Ph H OCH

2
CN 83

21 OCH
2
Ph H CH

2
NH NO

2
0.8

22 CH
3

H CH
2
NH NO

2
9.2

23 CH
3

H CH
2
NH SO

2
CH

3
9.8

24 CH
3

H CH
2
NH Cl 300

25 CH
3

Cl NHCH
2

SO
2
CH

3
4.2

26 CH
3

Br NHCH
2

SO
2
CH

3
5.7

27 CH
3

H N(CH
3
)CH

2
SO

2
CH

3
3.7

aTaken from Ref. [16]. bCompound having 3,5-F
2
 at terminal phenyl ring.
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then be proper to address the interaction involved at recep-
tor sites.

In order to widen the scope of the study, the graph theory 
may be used as an alternative approach to obtain correla-
tive descriptors. The highly informative descriptors, identi-
fied through certain mathematical procedure, may then be 
used to derive significant QSAR models to address the phe-
nomenon under investigation. The DRAGON software [20], 
developed recently, is able to compute a large number of 
descriptors belonging to 0D-, 1D-, 2D- and 3-D classes. Prior 
to the computation of molecular descriptors, the structures 
of the compounds have been drawn in ChemDraw using the 
standard procedure. These structures were converted into 
3D objects using the default conversion procedure imple-
mented in the CS Chem3D Ultra. These 3D-structures were 
then ported to DRAGON software and a total number of 478 
descriptors, pertaining to 0D-, 1D-, and 2D-classes, have only 
been computed for the sake of simplicity to interpret them 
in terms of common physical phenomenon. The descriptor 
classes along with their definitions and scope in addressing 
the structural features have been given in Table  II. As the 
total number of descriptors involved in this study is very 
large, only the names of descriptor classes and the actual 
descriptor involved in the models have been addressed in 
the discussion. The QSAR model generation and validation 
have been done using the combinatorial protocol in mul-
tiple linear regression (CP-MLR) analysis.

CP-MLR
The CP-MLR is a ‘filter’-based variable selection procedure 
for the development of statistical models in high dimensional 
QSAR studies [22–27]. It involves a combinatorial strategy 
with approximately placed ‘filters’ interfaced with MLR 
and extracts diverse models having unique combination of 
descriptors from the dataset. The filters set the thresholds 
for the descriptors in terms of inter-parameter correlation 
cutoff limits in subset regressions (filter-1), t-values of the 
regression coefficients (filter-2), internal explanatory power 
(filter-3; square root of adjusted multiple correlation coeffi-
cient of regression equation, r-bar), and the external consist-
ency (filter-4; Q2 i.e. cross-validated R2 from the leave-one-
out procedure). Throughout this study, the thresholds for the 
filters-1, 2 and 4 were assigned as 0.3, 2.0, and 0.3 ≤ Q2 ≤ 1.0, 
respectively while the filter-3 was assigned an initial value 
of 0.71. In order to collect the descriptors with higher infor-
mation content, the threshold of filter-3 was successively 
incremented with increasing the number of descriptors (per 
model) by considering the r-bar value of the preceding opti-
mum model as the new threshold for the next generation.

Descriptor classification protocol
The Three-stage descriptor classification protocol [23] is 
implemented with two-descriptor combinations (baseline 
models), as these are the simplest to understand and to 
explain the activity. In the first stage of the classification 
protocol, the correlations of the activity with two descriptor 
combinations from the individual descriptor classes (DCs) 	

of the dataset were used to sort them into four categories. 
They are primary contributors (category I: a DC forms a 
model with its constituent descriptors), collective contribu-
tors (category II: a DC unable to form a model with its con-
stituent descriptors, but forms model(s) in combination with 
a descriptor from another such DC), secondary contributors 
(category III: a DC from a model(s) only in combination with 
category I) and noncontributors (category IV: a DC unable 
to form a model(s) in any manner like that of category I, II, 
and III). The sorted DCs were collated in the second stage 
to identify all the 3-descriptor models across the categories. 
In the last stage, the individual descriptors of all three-de-
scriptor models were pooled to discover the higher models 
for the activity.

All the identified models have been put to the random-
ization test [24,33] by repeated randomization of the activity 

Table II.  Descriptor classes used for modeling the binding activity of the 
2,4-diaminopyrimidine analogues and identified categories in modeling 
the activity.

Descriptor class  
(acronyms)a Definition and scope

Descriptor’s 
categoryb

Constitutional  
(CONST)

Dimensionless or 0D descriptors; 
independent from molecular 
connectivity and conformations

I

Topological  
(TOPO)

2D-descriptor from molecular 
graphs and independent 
conformations

I

Molecular walk  
counts (MWC)

2D-descriptors representing self-
returning walks counts of  
different lengths

II

Modified Burden 
eigenvalues (BCUT)

2D-descriptors representing 
positive and negative eigenvalues 
of the adjacency matrix, weights 
the diagonal elements and atoms

I

Galvez topological  
charge indices  
(GVZ)

2D-descriptors representing the 
first 10 eigenvalues of corrected 
adjacency matrix

I

2D-autocorrelations 
 (2DAUTO)

Molecular descriptors calculated 
from the molecular graphs by 
summing the products of atom 
weights of the terminal atoms of  
all the paths of the considered 
path length (the lag)

I

Functional  
groups (FUNC)

Molecular descriptors based on 
the counting of the chemical 
functional groups

II

Atom centered 
fragments (ACF)

Molecular descriptors based on 
the counting of 120 atom centered 
fragments, as defined by  
Ghose-Crippen

I

Empirical (EMP) 1D-descriptors represent the 
counts of non-single bonds, 
hydrophilic groups and ratio of  
the number of aromatic bonds 
and total bonds in an H-depleted 
molecule

III

Properties (PROP) 1D-descriptors representing 
molecular properties of a molecule

I

aReference [20]. bDescriptor categories identified at the end of second 
stage; in this the filter values are: filter-1 as 0.3, filter-2 as 2.0, filter-3 as 
0.71, and filter-4 as 0.3 ≤ Q2 ≤ 1.0, the number of compounds in each 
dataset is 27.
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to discover the chance correlations, if any, associated with 
them. For this every model has been subjected to 100 simu-
lation runs with scrambled activity. The scrambled activity 
models with regression statistics better than or equal to that 
of the original activity model have been counted to express 
the percent chance correlation of the model under scrutiny. 
The model development procedure has been finally vali-
dated externally by creating test set from complete data set.

Results and discussion

Initially, the GHS-R Ca+2 flux activity was correlated to the 
GHS-R binding activity of all the 35 congeners to confer 
whether the two activities are inter-correlated to each other. 
The derived correlation between them is as in Equation (1)

pIC (Binding)   pIC Ca  flux

 

50
+2= ±

+
=

0 774 0 129

0 849

35

50. ( . ) ( )

.

,n rr s

F p

= =

= < −

0 871 0 414

103 470 10 4

. , . ,

. ,

  

 

� (1)

Here and in the follow up discussion, n, r, s, F and p are 
respectively the number of data-points considered in the 
analysis, the regression coefficient, the standard error 
of estimate, the Fischer ratio and the significance of the 
model. Above correlation has divulged significant statistical 
parameters, which ensures that the GHS-R binding activ-
ity and the GHS-R intracellular Ca+2 flux activity are inter-
related to each other. The subsequent elaboration is, there-
fore, based on the consideration of only the pIC

50
(Binding) 

as the dependent variable.
In formulation of the Fujita-Ban matrix, eighteen com-

pounds of Table I were retained in the training set, with com-
pound 1 as the parent congener. However, nine compounds 
(3, 6, 15–18, 25–27) from this Table were not included in 
this set as certain substituents, at a given position, in these 
congeners occurred only once. The matrix consisting of 18 
compounds (rows) and 9 substituents (including parent 
contribution) related to varying positions of the parent moi-
ety (columns) is not documented here for the sake of brevity. 
The matrix was subjected to MRA and the derived statistical 
parameters of the study corresponding to the binding activ-
ity were:

n r s F p= = = = < −18 0 991 0 180 60 753 10 4, . , . , . ,    

All these statistical parameters tune to the highly significant 
results as F-value remained significant at 99% level while 
r-value has accounted for 98% of variance in observed activi-
ties. The calculated activity values (Table III) of the com-
pounds considered in the study were in close agreement with 
the observed ones. The activity contributions of different 
substituents and parent moiety are given in Table IV. From 
this Table, the substituents that make higher positive con-
tribution to activity, relative to parent moiety, may easily be 
identified. Thus, the substituent OCH

2
C

6
H

5
 present at R

1
 and 

the substituents SO
2
CH

3
, NO

2
, SO

2
CF

3
, COCH

3
 and CN, in that 

order, present at position Y are advantageous. The appropri-
ate substituents for varying positions, which make highest 
positive contribution to parent moiety may be selected for 
the further design of more active analogues of the series.

It is important to note that the Fujita-Ban approach 
cannot extrapolate beyond the compounds, considered in 
the training set whereas the Hansch approach, discussed 
below can do so. Thus, in the latter approach the data set 
has been extended to include the compounds which were 
not considered in Fujita-Ban study. In order to carry out 
the Hansch type of analysis, a number of physicochemical 
parameters for the R

1
- and Y-substituents were selected 

and analyzed in a systematic manner for their correla-
tions to GHS-R binding activity. The data-set, consist-
ing of substituent constants such as hydrophobicity, 
,  hydrogen-bond donor, HD, hydrogen-bond acceptor, 
HA, electronic,  (meta and para), field, F, resonance, 
R, dipole moment, , molar refraction, MR, molecular 
weight, MW and van der Waals volume V

w
 for each of the 

varying positions of the compounds were considered by 
permuting them to derive all possible models. Due to 
limited variations at incision X, the indicator variable was 
only considered. The highest significant correlation that 
could be emerged from these substituents constants is 
given by Equation (2)

pIC  = 1.473( 0.29) HA(R ) 2.005( 0.40) MR

1.216( 0.54) 
50 1 Y  

  II  

1.108( 0.38) I 5.377

     

x

Y  

n r s F= = = =27 0 924 0 397 32 3, . , . , . 338

10 0 791 0 8124 2 2

,

, . , .

 

       LOO L5Op Q Q< = =

� (2)

where the indicator variables I
X
 and I

Y
 highlighting the pres-

ence of an -OCH
2
- at X-incision in between two phenyl rings 

and NO
2
-substituent at Y-position, respectively. The values 

1 or 0 for these variables indicate, respectively, the presence 
or absence of aforesaid structural features. The statistical 
indices, Q2

LOO
 and Q2

L5O
 have been obtained, respectively, by 

leave-one-out (LOO) and leave-five-out (L5O) procedures 
[34–36]. The derived statistical parameters have indicated 
highly significant results and Equation (2) as such reflected 
the parametric requirement of various substituents pre-
sent at different positions of said analogues. The r2-value 
has accounted for 85% of variance in the observed activity 
values while F-value remained significant at 99% level. The 
sufficiently high values of cross-validated indices, Q2

LOO
 and 

Q2
L5O

, are both in favor of a robust and a highly predictable 
QSAR model. The calculated activity values using Equation 
(2) have remained in close agreement with the observed 
ones (Table III). From Equation (2), it appeared that a R

1
-

substituent having hydrogen-bond acceptor character and 
a Y-substituent being more bulky/polar are advantageous in 
improving the binding activity of a compound. Additionally, 
the presence of NO

2
-substituent at Y and absence of -OCH

2
- 

at X are also essential.
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To widen the scope of present study, a high dimensional 
QSAR analysis has also been performed on these conge-
ners. Twenty seven analogues, considered above, have been 
investigated to correlate their the GHS-R binding activity 
with a variety of 0D-, 1D- and 2D-descriptors computed 
from DRAGON software. The significant correlation, derived 
in such descriptors, may then be used to interpret a topo-
logical model in relation to commonly employed physico-
chemical properties. The emerged topological model(s), in 
this way, will have the wider perspective to describe GHS-R 

binding activity in relation with DRAGON descriptors. 
A total number of ten classes pertaining to 0D-, 1D, and 
2D-descriptors have been implemented in this software. 
For present study, however, only seven classes were found 
important. A large number of descriptors from these classes 
have yielded significant correlations. These descriptors 
were identified as the primary contributors (category I) in 
modeling the inhibitory activity of these compounds. Nine 
significant models (Equations 3-11), identified in these 
descriptors and their statistical parameters, have been listed 
in Table V. From listed models in this Table, the inhibition 
activities of the compounds have been best explained by 
CONS, TOPO, BCUT, GVZ and 2DAUTO descriptor classes 
involving one- and two-descriptors. The CONS descriptors 
appeared in Equation (4), favors higher number of nitrogen 
and oxygen atoms (evinced, respectively, through nN and nO 
descriptors) in a molecular structure for enhanced activity. 
The TOPO class descriptor, S3K (3-path Kier alpha-modified 
shape index; information about centrality of branching) and 
T(N..O) (sum of topological distances between N and O) in 
Equation (6), favor the higher value of Kier alpha-modified 
shape index and topological distance between nitrogen 
and oxygen atom for improving the activity. These descrip-
tors, collectively, have explained 70 percent of variance in 
the activity. The appeared descriptors from BCUT class in 

Table III.  Observed, calculated and predicted (LOO) pIC
50

 values of training set compounds.

pIC
50

 (M)a

Eq. (2) Eq. (12) Eq. (13) Eq. (14) Eq. (15) Eq. (16)

S. 
No. Obsd.

Calc.
F.B. Calc. LOO Calc. LOO Calc. LOO Calc. LOO Calc. LOO Calc. LOO

  1 6.51 6.48 6.59 6.59 6.47 6.47 6.33 6.28 6.64 6.66 6.68 6.71 6.50 6.50

  2 8.13 8.10 8.08 8.08 7.67 7.64 8.16 8.16 8.14 8.14 8.18 8.18 7.96 7.94

  3 8.62 –b 8.08 8.08 9.16 9.68 8.02 7.96 8.14 8.10 8.18 8.14 8.85 8.92

  4 7.96 8.03 7.96 7.96 7.89 7.88 8.17 8.24 8.14 8.16 8.18 8.20 8.17 8.25

  5 7.24 7.37 7.62 7.62 7.04 7.02 7.50 7.52 7.39 7.40 7.43 7.44 7.84 7.89

  6 7.89 –b 7.55 6.65 7.04 6.96 7.53 7.51 8.04 8.12 7.43 7.40 7.86 7.84

  7 6.80 6.97 6.65 7.96 7.24 7.36 6.81 6.82 6.64 6.61 6.68 6.67 6.96 6.98

  8 7.68 7.62 7.96 8.06 8.14 8.19 8.03 8.07 8.14 8.18 8.18 8.23 8.01 8.04

  9 7.72 7.90 8.06 9.43 7.79 7.79 7.53 7.50 7.77 7.78 7.80 7.81 7.70 7.70

10 9.70 9.46 9.44 9.56 9.23 9.10 9.39 9.30 9.44 9.39 9.45 9.41 9.24 9.05

11 9.52 9.53 9.55 9.43 8.98 8.90 9.05 8.99 9.28 9.24 9.29 9.26 9.02 8.95

12 9.00 9.05 9.43 9.09 9.43 9.52 9.02 9.02 9.28 9.31 9.29 9.33 9.08 9.10

13 8.92 8.80 9.09 8.12 8.38 8.33 8.41 8.35 8.52 8.49 8.54 8.51 8.91 8.91

14 8.55 8.40 8.12 7.86 8.61 8.63 8.16 8.02 7.94 7.86 7.97 7.88 8.01 7.95

15 8.54 –b 7.86 8.43 8.98 9.04 7.23 7.09 7.77 7.64 7.80 7.66 9.09 9.17

16 8.11 –b 8.43 7.06 7.76 7.72 8.40 8.46 8.47 8.49 8.49 8.52 7.71 7.63

17 7.30 –b 7.06 6.59 7.32 7.32 7.50 7.53 7.77 7.85 7.80 7.88 7.70 7.78

18 5.50 –b 6.59 8.34 6.70 6.92 6.72 6.92 5.80 5.95 5.87 6.05 5.60 5.66

19 8.16 8.19 8.34 6.90 8.12 8.11 8.54 8.74 8.72 8.94 8.65 8.93 8.55 8.71

20 7.08 7.06 6.90 9.43 7.76 7.83 7.86 7.91 7.63 7.87 7.57 7.88 7.54 7.76

21 9.10 9.36 9.44 7.96 9.23 9.27 9.60 9.77 9.43 9.48 9.44 9.50 9.23 9.28

22 8.04 7.93 7.96 8.08 7.89 7.86 8.40 8.48 8.12 8.12 8.16 8.17 8.16 8.21

23 8.01 8.00 8.08 6.59 7.67 7.65 8.10 8.11 8.12 8.13 8.16 8.17 7.95 7.95

24 6.52 6.37 6.59 8.08 6.47 6.46 6.57 6.58 6.64 6.65 6.68 6.71 6.50 6.50

25 8.38 –b 8.08 8.08 8.11 8.08 8.35 8.35 8.12 8.09 8.16 8.14 7.97 7.93

26 8.24 –b 8.08 8.08 8.11 8.09 8.48 8.50 8.12 8.11 8.16 8.15 7.98 7.95

27 8.43 –b 8.08 7.54 8.43 8.43 7.76 7.61 7.48 7.03 7.45 6.82 7.54 7.10
apIC

50
 expressed as negative logarithm on molar basis, taken from Ref. [16]. bNot included in the Fujita-Ban study.

Table IV.  The Fujita-Ban contributions of substituents and parent moiety 
to the GHS-R binding activity of the 2,4-diaminopyrimidine analogues.

Position Substituent Contribution to pIC
50

Parent moiety  6.476(±0.22)

R
1

OCH
2
C

6
H

5
1.429(±0.18)

X CH
2
NH −0.103(±0.22)

OCH
2

−1.346(±0.30)

Y CN 0.497(±0.30)

COCH
3

0.892(±0.31)

NO
2

1.559(±0.26)

SO
2
CF3 1.149(±0.31)

 SO
2
CH

3
1.628(±0.27)
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Equation (7) have revealed the importance of BEHv8, (high-
est eigenvalue n. 8 of Burden Marix/weighted by atomic 
van der Waals volumes) and BELp2 (lowest eigenvalue n. 2 
of Burden Marix/weighted by atomic polarizabilities). The 
higher values of such descriptors have been found advanta-
geous in improving the activity of a compound. In Equation 
(8), the descriptors, GGI8 (topological charge index of 
order 8) and JGI3 (mean topological charge index of order 
3), both from GVZ class, have explained the involvement 
of charge indices of order 8 and 3 to augment the activity. 
Similarly the 2D-AUTO descriptors in Equation (9), the 
MATS7v (Moran autocorrelation of lag 7/weighted by atomic 
van der Waals volumes) and GATS1e (Geary autocorrelation 
of lag 1/weighted by atomic Sanderson electronegativities) 
have suggested the importance of lags 7 and 1 weighted by 
aforesaid properties. The significance of various emerged 
models (Table V) may be ascertained through the statisti-
cal parameters, r, s, and F. The cross-validated index Q2, 
obtained from LOO procedure, may further assist in identi-
fying the robustness of these models. The physical interpre-
tation of resultant descriptors has been described briefly in 
the footnotes under Table V.

In order to have statistical significant correlations, the 
higher models, involving the descriptors from two different 
pools, have been derived further. The first pool comprise of 
14 descriptors (Table V) which have been identified earlier 
as primary contributors under the category analysis. These 
descriptors were subjected to CP-MLR and the resulting two 
highly significant models, in three descriptors, are shown in 
Equation (12) and (13)

pIC nN GGI  

 JGI
50 0 853 0 201 9 332 1 066 8

27 530 6 007 3

= +
+ −

. ( . ) . ( . )

. ( . ) 11 752

27 0 886 0 472 28 006

10 0 64 2

.

, . , . , . ,

, .

n r s F

p Q

= = = =

< −

    

 = LOO 886 0 7122, . L5OQ =

� (12)

pIC nN T N..O

MATS7
50 0 462 0 221 0 011 0 002

6 944 2 065

= +
−

. ( . ) . ( . ) ( )

. ( . ) vv

     

LOO

+

= = = = <

=

−

4 510

27 0 853 0 532 20 451 10

0

4

2

.

, . , . , . , ,

.

n r s F p

Q 6633 0 5912, . L5OQ =

� (13)

In above models, the descriptor nN is accounting for the 
number of nitrogen atoms in the structure under consider-
ation. The positive regression coefficient of this descriptor 
recommends for more number of nitrogen atoms in a com-
pound. Likewise, the higher values of the topological charge 
index of order 8, GGI8 and mean topological charge index 
of order 3, JGI3, are also essential for the improvement of 
activity of a compound. A higher value of sum of topological 
distances between N and O atoms [T(N..O)] and a lower 
positive value of MATS7v (Moran autocorrelation of lag 7/
weighted by atomic van der Waals volumes) would enhance 
the binding activity.

The second pool of descriptors was formulated from 
all 10 DRAGON classes considered collectively. A total 
number of 478 descriptors have been analyzed, through 
CP-MLR analysis, to generate 87 models. The participat-
ing descriptors (the number being 44), in these models 
along with their average regression coefficients, and total 
incidences are listed in Table 6. From 87 such models, the 
highly significant two models are shown in Equation (14) 
and (15)

pIC T N..O nHDon

C
50 0 012 0 002 0 655 0 221

0 835 0 149

= +
− −

. ( . ) ( ) . ( . )

. ( . ) 0002 4 195

27 0 911 0 419 37 643 10 4

2

+

= = = = <

=

−

.

, . , . , . , ,n r s F p

Q

     

LOO 00 724 0 7092. , .         L5OQ =  �

(14)

Table V.  The selected QSAR models, emerged in one and two descriptors from different descriptor classes belonging to category-I.

Descriptor’s  
Class Constant Descriptor-1 Descriptor-2 ra s F Q2 Eq.

CONS 6.742 0.722nO — 0.769 0.638 34.731 0.472 (3)

3.860 0.544nN 0.755nO 0.815 0.590 22.822 0.525 (4)

TOPO 6.841 0.012T(N..O) — 0.756 0.653 32.028 0.487 (5)

4.828 0.396S3K 0.012T(N..O) 0.835 0.561 26.388 0.601 (6)

BCUT −72.914 8.789BEHv8 29.021BELp2 0.791 0.624 19.181 0.475 (7)

GVZ 3.369 8.441GGI8 22.027JGI3 0.795 0.618 19.801 0.525 (8)

2D-AUTO 10.902 −10.23MATS7v −3.771GATS1e 0.821 0.582 23.743 0.578 (9)

ACF 8.223 −1.128C-002 0.484O-058 0.754 0.669 15.160 0.449 (10)

PROP 2.291 0.031MR 0.032PSA 0.767 0.653 16.457 0.439 (11)
a, in all the number of compounds (n) are 27, r is the correlation coefficient, Q2 is cross-validated index from leave-one-out (LOO) procedure, s is 
the standard error of the estimate and F is the F-ratio between the variances of calculated and observed activities. CONS: nO, Number of oxygen 
atoms; nN, Number of nitrogen atoms; TOPO: T(N..O), Sum of topological distances between N..O; S3K, 3-Path Kier alpha-modified shape index; 
BCUT: BEHv8, Highest eigenvalue n.8 of Burden Marix/weighted by atomic van der Waals volumes; BELp2, Lowest eigenvalue n.2 of Burden Marix/
weighted by atomic polarizabilities, GVZ: GGI8, Topological charge index of order 8; JGI3, Mean topological charge index of order 3; 2D-AUTO: MATS7v, 
Moran autocorrelation of lag 7/weighted by atomic van der Waals volumes; GATS1e, Geary autocorrelation of lag 1/weighted by atomic Sanderson 
electronegativities; ACF: C-002, CH2R2; O-058, O =; PROP: MR, Ghose-Crippen molar refractivity; PSA, Fragment based polar surface area.

Jo
ur

na
l o

f 
E

nz
ym

e 
In

hi
bi

tio
n 

an
d 

M
ed

ic
in

al
 C

he
m

is
tr

y 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
M

al
m

o 
H

og
sk

ol
a 

on
 1

2/
26

/1
1

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



1030    S. Sharma et al.

pIC   T N..O  nNHRPh50 0 011 0 001 0 731 0 269

0 812 0 15

= +
−

. ( . ) ( ) . ( . )

. ( . 11 002 6 766

27 0 907 0 429 35 624 10 4

) .

, . , . , . , ,

 C

     

− +

= = = = < −n r s F p

QLLOO L5O         2 20 684 0 724= =. , .Q

 
�

(15)

where Q2
LOO

 have addressed to a robust model and r-value 
accounted for 83 and 82 % of variances, respectively, in 
the observed activities. The newly appeared descriptors 
in above equations, nHDon (number of donor atoms for 
H-bonds with N and O) and nNHRPh (number of second-
ary aromatic amines) belong to FUNC class of descriptors. 
A higher value of these descriptors in addition to the higher 
value of topological distances between N and O atoms would 
increase the binding activity. The other emerged descriptor, 
from ACF class, C-002, is representative of the fragment 

‘CH2R2’ in which two valences of a carbon atom are satis-
fied by hydrogen atoms and other two by alkyl groups. The 
negative regression coefficient of this descriptor advocates 
the absence of such fragments in a compound to have its 
improved activity. The descriptors of Table VI hold scope for 
even higher models. The best model, involving four descrip-
tors, has been selected out of 41 models evolved by CP-MLR 
and is given in Equation (16)

pIC   MAXDP   nNO2Ph 

           
50 0 591 0 074 0 700 0 217= +. ( . ) . ( . )

    nHDon   C

            

+ −
− +

0 461 0 209 1 013 0 140

002 3 9

. ( . ) . ( . )

. 994

27 0 925 0 397 32 397 10

0 761

4

2

n r s F p

Q

= = = = <

=

−, . , . , . , ,

. ,

     

 LOO QQL5O  2 0 694= .
�

�

(16)

The statistical parameters of Equation (16) have now 
improved over to that of Equation (14) and (15), justifying 

Table VI.  Descriptors identified for modeling the binding affinities of 2,4-diaminopyrimidine derivatives at the growth hormone secretagogue receptors 
along with the average regression coefficients and the total incidences.

Descriptor’s Class Descriptora

Avg reg coeff 
(incidence)b Descriptora

Avg reg coeff 
(incidence)b Descriptora

Avg reg coeff 
(incidence)b

CONS Mv −40.938(3) RBN 0.642(3) RBF 28.436(1)

nN 0.811(23) — — — —

TOPO HNar −5.473(1) GNar −8.763(1) MAXDP 0.636(43)

X0A 36.292(1) XMOD 0.067(1) IC2 2.446(8)

TIC2 0.033(6) TIC3 0.017(1) T(N..N) 0.011(10)

T(N..O) 0.012(9) — — — —

BCUT BELm5 5.952(1) BELm8 10.419(5) BEHv8 8.628(6)

BELv2 16.592(3) BELv8 5.489(2) BEHe2 11.367(3)

BELe8 8.072(7) BEHp8 9.263(6) BELp8 5.262(2)

GVZ GGI5 4.981(2) GGI8 8.710 (15) JGI3 27.530(1)

2D-AUTO MATS2v 11.081(7) MATS7v −10.027(1) MATS8v 6.125(1)

MATS5e 7.223(5) GATS8v −5.759(1) GATS1e −3.136(2)

GATS8e −2.814(2) — — — —

FUNC nNHRPh 0.741(2) nNO2Ph 1.012(14) nROR 0.974(5)

nRORPh −0.910(1) nHDon 0.649(7) — —

ACF C-002 −0.980(16) C-025 0.642(1) H-047 0.120(1)

O-061 0.506(1) N-076 1.012(14) — —

PROP MLOGP −0.601(1) — — — —
aThe descriptors are identified from the three parameter model emerged from CP-MLR protocol with filter-1 as 0.30; filter-2 as 2.0; filter-3 as 0.911; 
filter-4 as 0.3 ≤ Q2 ≤ 1.0; number of compounds in the study are 27; CONS: Mv, Mean atomic van der Waals volume (scaled on Carbon atom); RBN, 
Number of rotatable bonds; RBF, Rotatable bond fraction; nN, Number of nitrogen atoms; TOPO: HNar, Narumi harmonic topological index; GNar, 
Narumi geometric topological index; MAXDP, Maximal electrotopological positive variation; X0A, Average connectivity index of 0 order; XMOD, 
Modofied Randic chi-1 index; IC2, Information content index (neighbourhood symmetry of 2-order); TIC2 and TIC3, Total information content index 
(neighbourhood symmetry of 2 and 3-order, respectively); T(N..N) and T(N..O), Sum of topological distances between N..N and N..O, respectively; 
BCUT: BELm5 and BELm8, Lowest eigenvalue n.5 and 8, respectively, of Burden Marix/weighted by atomic masses; BEHv8, Highest eigenvalue n.8 
of Burden Marix/weighted by atomic van der Waals volumes; BELv2 and BELv8, Lowest eigenvalue n.2 and 8, respectively, of Burden Marix/weighted 
by atomic van der Waals volumes; BEHe2, Highest eigenvalue n. 2 of Burden Marix/weighted by atomic Sanderson electronegativities; BELe8, Lowest 
eigenvalue n.8 of Burden Marix/weighted by atomic Sanderson electronegativities; BEHp8, Highest eigenvalue n.8 of Buden Marix/weighted by atomic 
polarizabilities; BELp8, Lowest eigenvalue n.8 of Burden Marix/weighted by atomic polarizabilities; GVZ: GGI5 and GGI8, Topological charge index of 
order 5 and 8, respectively; JGI3, Mean topological charge index of order 3; 2D-AUTO: MATS2v, MATS7v and MATS8v Moran autocorrelation -lag 2, 7 and 
8, respectively/weighted by atomic van der waals volumes; MATS5e, Moran autocorrelation-lag 5/weighted by atomic Sanderson electronegativities; 
GATS8v, Geary autocorrelation-lag 8/weighted by atomic van der waals volumes; GATS1e and GATS8e, Moran autocorrelation-lag 1 and 8, respectively/
weighted by atomic Sanderson electronegativities; FUNC: nNHRPh, Number of secondary aromatic amines; nNO2Ph, Number of nitro groups 
(aromatic); nROR, Number of ethers (aliphatic); nRORPh, Number of ethers (aromatic); nHDon, Number of donor atoms for H-bonds (with N and O); 
ACF: C-002, CH2R2; C-025, R-CR-R; H-047 H attached to C1(sp3)/C0(sp2); O-061, O–; N-076, Ar-NO2/R-N(-R)-O/RO-NO2; PROP: MLOGP, Moriguchi 
octanol-water partition coefficient (logP). bThe average regression coefficient of the descriptor corresponding to all models and the total number of its 
incidences; the arithmetic sign of the coefficient represents the actual sign of the regression coefficient in the models.
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its superiority over to that of previously derived models. 
The TOPO class descriptor, MAXDP (the maximal electro-
topological positive variation), which contributes positively 
to the activity and hence recommends maximum positive 
field effects for improvement of activity. The other FUNC 
class descriptor, nNO2Ph (number of aromatic nitro groups) 
recommends nitro substituted aromatic ring to augment 
the activity. A more number of donor atoms for H-bonds 
(nHDon) and absence of ‘CH2R2’ fragment (C-002) in a 
structure are essential to improve the binding activity of 
titled compounds.

All the descriptors appeared in above models had no 
mutual correlation is shown in Table VII. The calculated (using 
models) and predicted activities (through LOO procedure) 
have been found in close agreement to the observed ones 
(Table III). The graphical representation of the same is given 
in Figure 1 for the sake of clarity and goodness of fit.

Above model Equations (12–16) were further subjected 
to randomization process, where 100 simulations per 
model were carried out but none of the identified models 
has shown any chance correlation. Additionally, the above 
model Equations have been concomitantly validated with 

Table VII.  Cross-correlation matrixa amongst predictor variables in models.

Eq. (2) Eq. (12)

 HA(R
1
) MR

Y
I

X
I

Y
 nN GGI8 JGI3  

HA(R
1
) 1.000 0.295 0.316 0.047 nN 1.000 0.205 0.157  

MR
Y

 1.000 0.042 0.235 GGI8  1.000 0.257  

I
X

  1.000 0.118 JGI3   1.000  

I
Y

   1.000      

Eq. (13) Eq. (14)

 nN T(N..O) MATS7v   T(N..O) nHDon C-002  

nN 1.000 0.022 0.197  T(N..O) 1.000 0.197 0.199  

T(N..O)  1.000 0.250  nHDon  1.000 0.207  

MATS7v   1.000  C-002   1.000  

Eq. (15) Eq. (16)

 T(N..O) nNHRPh C-002   MAXDP nNO2Ph nHDon C-002

T(N..O) 1.000 0.183 0.199  MAXDP 1.000 0.008 0.094 0.000

nNHRPh  1.000 0.163  nNO2Ph  1.000 0.082 0.069

C-002   1.000  nHDon   1.000 0.207

    C-002    1.000
aMatrix elements are the r-values.

Figure 1.  Plot of observed versus calculated and predicted pIC
50
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the external test set of structurally dissimilar (bearing het-
eroaryl group at R

3
) eight compounds listed in Table VIII. They 

have shown the test set r2 values in the range of 0.456 to 
0.563. The predictions of the test set compounds obtained 
with the models (12-16) and the corresponding predictive r2 
have also been given in the same Table.

Conclusions

Fujita-Ban and Hansch type of analyses, for 27 congeners 
of Table 1, have revealed the results which are complemen-
tary to each other. For example, the Hansch type of study 
has shown the importance of a hydrogen-bond acceptor 
substituent at R

1
; the Fujita-Ban study, in conformity with it, 

has assigned highest substituent’s contribution to a similar 
substituent such as OCH

2
C

6
H

5
. Similarly, in Hansch type of 

analysis the substituent such as NO
2
 having higher refrac-

tion parameter, accounting for bulk and polar effect, at Y 

has been identified advantageous. In agreement to this, the 
Fujita-Ban study has emphasized the importance of sub-
stituents such as SO

2
CH

3
, NO

2
, SO

2
CF

3
, and COCH

3
. Both 

these studies have favored a –CH
2
NH- type of substitution at 

incision X and H at R
2
.

Since the descriptors in DRAGON software have been 
computed for the structure of a molecule as a whole, 
therefore, it may be improper to rationalize the indi-
vidual variations in terms of evolved descriptors. Thus, 
for the data set in Table I, the descriptors appeared in 
highest significant model have advocated the import-
ance of maximum positive field effects (MAXDP), more 
nitro substituted phenyl ring (nNO2Ph) in addition to a 
larger number of donor atoms for H-bonds containing 
substituents (nHDon). Likewise, the descriptor C-002 
favored the absence of a particular fragment ‘CH2R2’ in a 
structure to enhance the GHS-R binding activity of titled 
compounds.

Table VIII.  The structuresa of the 2, 4-diaminopyrimidine analogues included in test set and the predictions with corresponding test set r2.

N

N

R1

H2N

NH2

X

R3

R2

pIC
50

 (M) Calculated

S.No. R
1

R
3

Obsd. Eq. (12) Eq. (13) Eq. (14) Eq. (15) Eq. (16)

28 CH
3

N

Cl

6.96 7.26 6.54 6.64 6.68 6.50

29 CH
3

Cl

S 6.54 6.38 5.82 6.64 6.68 6.50

30 OCH
2
Ph

Cl

N
8.82 8.54 7.98 7.92 7.94 7.70

31 OCH
2
Ph

Cl

S 8.20 7.58 7.26 7.77 7.80 7.70

32 OCH
2
Ph

N
7.68 8.17 8.24 7.92 7.94 7.70

33 OCH
2
Ph

ClS

7.37 7.58 7.45 7.77 7.80 7.70

34 OCH
2
Ph 7.17 7.78 7.44 7.77 7.80 7.70

35 OCH
2
Ph

N

6.89 8.36 7.57 7.91 7.93 7.72

Test set r2 0.456 0.497 0.563 0.558 0.552
aIn all the structures: X =NHCH

2
, R

2
 = H.
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The present study may, therefore, provide further scope 
for substitutional modifications of 2, 4-diaminopyrimidine 
scaffold to bring out high GHS-R binding potential com-
pounds. The substitutions having increased chain lengths, 
such as OCH

2
CH

2
Ph, at R

1
 position and hydrogen donor, 

such as N(OH)CH
2
, at X may be explored.
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